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   Breast Cancer Heterogeneity: A Mixture of At Least 
Two Main Types? 
   William F.     Anderson   ,    Rayna     Matsuno   

               Breast cancers are clinically heterogeneous  ( 1 ) . However, 
breast cancer etiologic heterogeneity is not so well established. 
Traditionally, breast cancer has been viewed as one biologic 
 entity with common etiology  ( 2 ) . Much like the adenoma-to-
 carcinoma sequence for colorectal cancer  ( 3  –  6 ) , breast cancers 
supposedly result from stochastic molecular changes over long 
periods. Stepwise molecular alterations are mirrored by histo-
logic progression from normal breast epithelium to atypical hy-
perplasias to carcinoma in situ to invasive breast cancer  ( 7 , 8 ) . 

 Accumulating facts challenge this purely stochastic view  ( 9 ) . 
Emerging data demonstrate that the stratifi cation of tumors by 
gene expression profi les  ( 10  –  14 )  and other techniques  ( 15  –  17 )  
divides breast cancer into a mixture of at least two main types, 
with fi ve subtypes, according to hormone receptor expression 
(negative or positive) and/or epithelial cellular origin (basal or 
luminal). The hormone receptor – negative (basal) group has three 
subtypes — one with HER2 overexpression, one  “ normal-like, ”  
and one basal subtype with positive epidermal growth factor re-
ceptor (EGFR), absent estrogen receptor (ER), absent progester-
one receptor (PR), and absent HER2 expression (i.e., the 
so-called triple-negative subtype). The hormone receptor – posi-
tive group has two subtypes — luminal A and luminal B. Human 
ER-negative and basal tumors are parenthetically associated 
with the rare medullary carcinomas and mutations in the BRCA1 
gene  ( 18  –  22 ) . 

 In this issue of the Journal, Asselin-Labat et al. examined 
 expression profi les in normal mouse mammary stem cells  ( 23 ) . 
Using purifi cation methods for the prospective and differential 
isolation of adult mouse mammary epithelial cells  ( 24 , 25 ) , they 
identifi ed a hierarchical parent – progeny relationship between 
mouse mammary stem cells and their derivative colony-forming 
cell progeny. Mouse mammary stem cells expressed CD24 +  
along with relatively high levels of CD29 or CD49 and coex-
pressed myoepithelial cellular markers that were similar to those 
expressed by human basal breast cancers. Their derivative 

 colony-forming cell progeny expressed CD24 +  along with rela-
tively low levels of CD29 or CD49 and coexpressed markers 
with luminal features. 

 The authors then evaluated hormone receptor expression and 
other prognostic markers in the mouse mammary stem cell (or 
basal-like) and their derivative colony-forming progeny (or lumi-
nal) populations. Mouse mammary stem cell-enriched (basal) 
cells expressed EGFR but did not express ER, PR, or HER2 
(consistent with the triple-negative phenotype of human breast 
tumors). These stem cells also expressed other hallmarks of 
 human basal tumors, such as p63. In contrast, their derivative 
 colony-forming cell progeny (luminal) expressed ER and PR but 
did not express HER2, EGFR, and p63. Oophorectomy of 8-
week-old virgin mice had no effect on the mouse mammary stem 
cell (basal) population but suppressed their derivative colony-
forming cell progeny (luminal). 

 These fi ndings in mice support a cancer stem cell (or tumor-
initiating cell) and/or mixture model for the human breast (or 
breast cancer)  ( 26  –  29 ) . In this hierarchical (or stem cell) model, 
the normal human breast evolves from stem cells of the terminal 
duct lobular unit  ( 30 ) , a two-cell anatomic complex composed of 
basal (myoepithelial) and luminal (glandular) epithelial compo-
nents. After a tumor-initiating or gatekeeper event  ( 31 ) , tumor 
progression and promotion result in breast cancers with either 
1) basal cellular differentiation and negative hormone receptor 



Journal of the National Cancer Institute, Vol. 98, No. 14, July 19, 2006 EDITORIALS 949

expression or 2) luminal cellular differentiation and positive 
 hormone receptor expression. 

 Consistent with a stem cell and/or mixture breast cancer 
model, epidemiologic data show that the classically recognized 
infl ection point in age-specifi c breast cancer rates at menopause 
[Clemmesen’s Hook  ( 32 ) ] refl ects the confl uence of two different 
rate curves, according to estrogen receptor expression  ( 33 ) . Un-
like most epithelial tumors, which have linear age-specifi c rates 
on a log – log scale  ( 34 , 35 ) , rates for ER-negative tumors increase 
rapidly until age 50 years and then fl atten or fall ( Fig. 1 , A). Rates 
for ER-positive tumors increase rapidly until age 50 years then 
continue to rise at a slower pace. Rates for ER-negative tumors 
show a bimodal breast cancer population, with predominant 
early-onset mode or peak frequency near age 50 years ( Fig. 1 , B). 
ER-positive rates are associated with a mostly late-onset cancer 
population and mode near age 70 years. Similar bimodal inci-
dence patterns are observed for tumor size (large versus small), 
lymph node status (positive versus negative), grade (high versus 
low), and PR status (negative versus positive) with modal ages of 
50 and 70 years  ( 36 ) .     

 The apparent differences in age incidence patterns suggest, 
somewhat paradoxically, that premenopausal hormonal expo-
sures have greater impact on ER-negative than on ER-positive 
tumors  ( 33 , 37 , 38 ) . The timing of hormonal exposures as well 
as the distinction between tumor initiation and promotion or 
progression may partly explain this dual age-related effect 
 ( 33 , 39 ) . For example, premenopausal tamoxifen and oophorec-
tomy  appear to reduce hereditary and somatic breast cancers 
across all levels of risk, whereas postmenopausal tamoxifen 
prevents ER-positive but not ER-negative disease  ( 40  –  44 ) . 
 Furthermore, hormone-dependent carcinogenesis might theo-
retically initiate an ER-negative progenitor with the subsequent 

capacity for hormone-independent promotion or progression, 
whereas hormone-independent genetic alterations and/or expo-
sures could initiate an ER-positive cancer that was hormone 
dependent for tumor promotion or progression. A critical re-
view of 31 publications, indeed, found differential effects for 
reproductive risk factors by ER expression  ( 45 ) . Analysis of 
data from a case – control study in Poland has strengthened sup-
port for this view  ( 46 ) . Differential associations for reproduc-
tive hormonal exposures according to hormone receptor status 
also have been observed in the Nurses’ Health Study  ( 47 )  and 
Women’s Health Initiative  ( 48 ) . 

 Moreover, ER-negative and ER-positive breast cancers are 
differentially linked to screening mammography  ( 49  –  52 ) , with 
ER-negative tumors less likely than ER-positive cancers to be 
screen-detected. ER concentration tends to be inversely associ-
ated with HER2 overexpression  ( 53 , 54 ) . ER-negative and ER-
positive tumors respond differently to chemoprevention and to 
systemic hormonal and/or chemotherapy  ( 43 , 55  –  58 ) . An increas-
ing amount of data also demonstrate distinct clinical and molecu-
lar portraits for ER expression as tumors progress from early to 
late stages  ( 59 , 60 ) . Indeed, the hazard function for breast cancer 
death reveals two different prognostic patterns for ER-negative 
and ER-positive breast cancers ( Fig. 1, C )  ( 36 , 61 ) . 

 In conclusion, the mouse model system of Asselin-Labat et al. 
appears to support a large body of emerging — as well as estab-
lished molecular, epidemiologic, and clinical — evidence that is 
consistent with a stem cell or mixture breast cancer model, result-
ing in at least two main breast cancer types according to epithelial 
cellular origin and/or hormone responsiveness. Clinicians, in fact, 
have long suspected two main breast cancer types  ( 62  –  67 ) , which 
are mixed within the general population. The fi rst breast cancer is 
early onset with peak incidence near age 50 years and hormone 

  Fig. 1.     Incidence and prognostic patterns from data in the 
13 registry database of the National Cancer Institute’s 
Surveillance, Epidemiology, and End Results (SEER) 
program, November 2005 submission ( http://www.seer.
gov ).  A ) Breast cancer age-specifi c incidence rates per 
100   000 woman-years among women diagnosed with 
invasive breast cancer from January 1, 1992, through 
December 31, 2003. Overall incidence rates also include 
cases with unknown estrogen receptor status.  B ) Breast 
cancer age density plot for all breast cancer cases among 
women diagnosed with invasive breast cancer from 
January 1, 1992, through December 31, 2003. Probability 
density function refl ects a smoothed age distribution of 
cases at the time of primary breast carcinoma diagnosis, 
in which density multiplied by 100 equals the percentage 
of breast cancer cases diagnosed at that age.  C ) Hazard 
function of breast cancer death among women diagnosed 
with invasive breast cancer from January 1, 1992, through 
December 31, 2002. Hazard rate for breast cancer death 
is a conditional survival, describing the instantaneous rate 
of breast cancer death during a specifi ed period after the 
initial breast cancer diagnosis among women who were 
living at the beginning of that period.    
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dependent  ( 39 , 68 ) . The second breast cancer is late onset with peak 
incidence near age 70 years and largely hormone independent. 

 These data provide opportunity for refl ection and change. At 
a minimum, breast cancer can no longer be viewed as one  biologic 
entity. The concept of a stem cell or mixture model could form 
the basis for revised conceptual frameworks. For if breast can -
cer overall consists of a mixture of at least two main types, we 
need a stratifi ed rather than a unifi ed approach for breast cancer 
research, prevention, and treatment. For example, breast cancer 
research must consider subgroup as well as main effects. Breast 
cancer prevention must focus on tumor-initiating or gatekeeper 
events. Breast cancer therapy must target the undifferentiated, 
self-renewing, and cancer-initiating stem cell population.   
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